If it's not what You are looking for type in the equation solver your own equation and let us solve it.
750=8x+4.9x^2
We move all terms to the left:
750-(8x+4.9x^2)=0
We get rid of parentheses
-4.9x^2-8x+750=0
a = -4.9; b = -8; c = +750;
Δ = b2-4ac
Δ = -82-4·(-4.9)·750
Δ = 14764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14764}=\sqrt{4*3691}=\sqrt{4}*\sqrt{3691}=2\sqrt{3691}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{3691}}{2*-4.9}=\frac{8-2\sqrt{3691}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{3691}}{2*-4.9}=\frac{8+2\sqrt{3691}}{-9.8} $
| 8t+4.9t^2-750=0 | | 750-8t+4.9t^2=0 | | Z-12+44z=18 | | (X+12)/(y+12)=5/12 | | x-25/6=2/3 | | 13-7(x+2)=11-5(x+4) | | 4(c+12)=-18 | | x-27/10=2/5 | | x-31/6=5/3 | | 4x-1+4(x+1)=x+3 | | -2|x+1|-6=0 | | 4(3x-3)+26=10x+4 | | 4(3x-3)+26=10x=4 | | 3(y+6)=4(y-4 | | √5x+60-6=3x-20 | | 9x-(7x+8)=4 | | 3(3p+6)=16 | | P(x)=x^2+16 | | 3z-8=3(4+z)-13 | | 3x-8+4x-8=5x+2x+16 | | 39x=55 | | 39x=59 | | F(x)=5x^2+8x-4 | | 15x+60+12x-60-10x+60=1 | | 0=5x^2+8x-4 | | 12x-6-15x-10=30 | | (7y+2/12y^2+11y-15)-1/3y+5=2/4y-3 | | -15x+4=-13x-14 | | 9x-5=7x+37 | | 6n-(9n+9)=3-(8n-7) | | 4(15-x)=6-x | | 4/9s=3/8 |